

Klasse 8a

Liebe Schüler/innen der Klasse 8a,

heute gibt's wieder die <u>Lösungen</u> für die Aufgaben der vergangenen Woche und <u>neue Aufgaben</u> zum Knobeln. Wenn ihr mit den Lösungen fertig seid, habt ihr euch die Ferien <u>hochverdient!!!</u>

Ich wünsche Euch viel Spaß und Erfolg beim Üben!

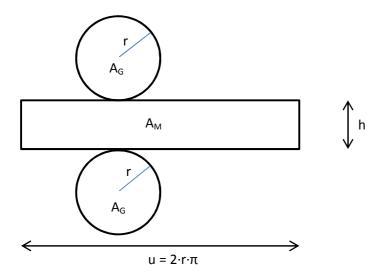
Viele liebe Grüße und bleibt gesund! Euer Herr Pilz

Neue Aufgaben:

WICHTIG: Textaufgaben!

Schreibt die Lösung genauso auf, wie gewohnt: geg. ges. Lsg. und AWS.

- 1.) Lehrbuch Seite 121 Nr. 5a
- 2.) Lehrbuch Seite 122 Nr.13
- **3.)** Ein 1m langes Wasserrohr aus Gusseisen hat einen äußeren Durchmesser von 35 cm und eine Wandstärke von 15 mm. Wieviel Kubikdezimeter Gusseisen werden zur Herstellung dieses Rohres benötigt!
- **4.)** Ein Hausbesitzer baut sich einen Speicher, um Regenwasser zu sammeln. Damit will er dann später seine Toilettenspülung betreiben. Er nutzt für seinen Bau 6 Hohlzylinderringe aus Beton, die er übereinanderstellt. Diese haben eine Höhe von 0,5 m und einen Außendurchmesser von 100 cm. Die Wandstärke der Betonringe beträgt 10 cm. Beton hat eine Dichte von 2600 kg pro m³.
- a.) Wie schwer ist ein Betonring?
- b.) Wieviel m³ Wasser kann der Hausbesitzer speichern?
- c.) Wir nehmen an, dass eine Spülung der Toilette 5 Liter Wasser verbraucht.

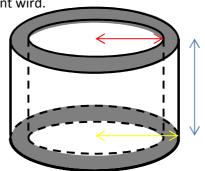

Wie oft kann gespült werden, wenn der Speicher voll ist und er nicht durch Regen wieder gefüllt wird?

- d.) Ein Kubikmeter Wasser kostet 2,09 Euro. Wieviel Geld kann man mit der Nutzung einer Speicherfüllung Regenwasser sparen?
- **5.)** Übertragt die nachfolgende Seite zum Oberflächeninhalt eines Kreiszylinders und zum Hohlzylinder in den Merkteil des Mathematikhefters!

Oberflächeninhalt eines Kreiszylinders

Der Oberflächeninhalt eines Kreiszylinders besteht aus der Summe der beiden gegenüberliegenden Grundflächen A_G und der Mantelfläche A_M .

Wir rechnen:
$$A_0 = 2 \cdot A_G + A_M$$


$$A_0 = 2 \cdot r^2 \cdot \pi + u \cdot h$$

$$A_0 = 2 \cdot r^2 \cdot \pi + 2 \cdot r \cdot \pi \cdot h$$

$$A_0 = 2 \cdot r \cdot \pi (r+h)$$

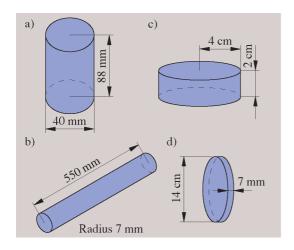
Der Hohlzylinder

Ein Hohlzylinder entsteht, wenn aus einem geraden Kreiszylinder ein Kreiszylinder mit einem kleineren Radius aber mit der gleichen Achse entfernt wird.

Volumen eines Hohlzylinders

$$V = A_G \cdot h$$
 $A_G \rightarrow Fläche des Kreisringes $\rightarrow A = \pi (r_a^2 - r_i^2)$$

$$V = \pi(r_a^2 - r_i^2) \cdot h$$



LÖSUNGEN

1.) Lehrbuch Seite 130 Nr. 1a h = 10,3 cm

2.) Lehrbuch Seite 125 Nr. 10 h = 15,5 cm

3.) Berechne das Volumen des jeweiligen Zylinders.

- a.) $V = 110584 \text{ mm}^3$
- b.) $V = 84666 \text{ mm}^3$
- c.) $V = 100,5 \text{ cm}^3$
- d.) $V = 107.8 \text{ cm}^3$
- **4.)** Eine zylinderförmige Regentonne hat einen Umfang von 235,5 cm und innen eine Höhe von 1,12 m. Sie wiegt leer 15 kg.
 - a) Wie viel Liter Regenwasser fasst die Tonne? $d = 75 \text{ cm} \rightarrow V = 0,495 \text{ m}^3 = 495 \text{ l}$
 - b) Wie schwer ist die halbvolle Tonne? Dichte von Wasser 997 kg/m³ → 15 kg Tonne plus Masse von 0,245 m³ Wasser → ca. 259 kg
- **5.)** Eine Konservendose hat einen Durchmesser von 10,9 cm und ist 12,2 cm hoch.

a) Berechne das Volumen. V = 1138,4 cm³

b) Passt 1 Liter in die Dose hinein? Ja, 1 Liter entspricht 1000cm³ < 1138,4 cm³